「ソフトウェアー・エンジニアリング」カテゴリーアーカイブ

ソフトウェアー関係の話題など・・

最近は、github にプッシュしてます~

RXマイコン用、libpng の構築

アルファ値を含んだ画像を扱う必要があるので、libpng をインポートした。
PNG では、インデックスカラーの場合でも、カラーパレットにアルファ値を含める事が出来る。
ただ、zlib が必要なのと、記憶割り当てを使う事から、BMP やJPEG を使っていたが、インデックスカラーでアルファ付画像を扱う必要性があり、やはりインポートをする事になってしまった・・
書き込みを使う事は「稀」と考えて、デコーダーのみではあるが・・・
Windows のフレームワーク「glfw_app」では以前からサポートしてあるので、そのコードを再利用したので簡単ではあったけど、意外とライブラリビルド時の「configure」の使い方で google 先生の助けを借りたw

libpng をビルドするには、zlib が必要なので、事前に zlib をビルドしておいた。
※zlib のビルドは普通に出来ると思う。

libpng のビルドでは、ツール関係(コマンドライン実行ファイル)のビルドで失敗するものの(RX マイコンでは、動かす環境のハードルが高い)、ライブラリの構築には成功しているので、それで「ヨシ」とした。
※github には「libpng.a」とヘッダーなど必要な物を上げてあるので、それを利用するぶんには、自分でビルドをする必要は無い。

 ./configure --includedir="/d/Git/RX/zlib" --host=rx-elf --disable-shared

Makefile 編集

make
cp .libs/libpng16.a /d/Git/RX/libpng/libpng.a
cp png.h /d/Git/RX/libpng/.
cp pnglibconf.h /d/Git/RX/libpng/.
cp pngconf.h /d/Git/RX/libpng/.

上記のように、「ホスト」を指定し、zlib のパスを追加してある。
しかしこれだけでは不十分で、make すると、zlib.h が無いとか言ってエラーになる・・・
正しいやり方が判らなかったので、手っ取り早く、configure で生成された Makefile を直接編集した。
・DEFAULT_INCLUDES = -I. -I/d/Git/RX/zlib
※zlib のパスを追加
・CFLAGS = -mcpu=rx600 -O2 -I/d/Git/RX/zlib
※最適化「-O2」を追加
・シェアードライブラリは必要無いので、省いてある。
・ビルドすると、「.libs」ディレクトリにライブラリが出来ている。
・必要なヘッダーをコピーする。

png ファイルのロードは、以前に実装したので、それをほぼそのまま使っている。(glfw3_app/common/img_io/png_io.hpp)

※組み込みでは、png ファイルを出力する事は「稀」と思うので、ロードのみサポートしている。

PNG 画像のアルファ値は、元の画素と合成されて描画する。
※アルファ値が「0」の場合、そのピクセルは描画されない。

#include "graphics/img_in.hpp"

namespace {

     typedef img::scaling<RENDER> PLOT;
     PLOT        plot_(render_);
     typedef img::img_in<PLOT> IMG_IN;
     IMG_IN      imgs_(plot_);
}


     imgs_.load(filename);・

・img_in クラスは、BMP、JPEG、PNG を自動で判別してロードするクラス。
・scaling クラスはワークメモリを最小限にして、スケールしながら描画するもので、それなりにエイリアシングも除去してくれる。

# cd res
# image ff.png
libpng warning: iCCP: known incorrect sRGB profile
# dir
      6727 Jul  9 2016 08:21  ff.png
      3407 Jul  9 2016 08:21  forte.png
     23148 Jul  9 2016 08:21  NoImage.png
      6371 Jul  9 2016 08:21  pause.png
      3419 Jul  9 2016 08:21  piano.png
      6856 Jul  9 2016 08:21  play.png
    373882 Jul  9 2016 08:21  Player.icns
    117306 Jul  9 2016 08:21  player.ico
     17632 Jul  9 2016 08:21  PlayerICON.png
      6361 Jul  9 2016 08:21  plus.png
      6748 Jul  9 2016 08:21  rew.png
      6607 Jul  9 2016 08:21  right.png
      3934 Jul  9 2016 08:21  seek_handle.png
      6364 Jul  9 2016 08:21  seg12.ttf
      4680 May  6 2019 23:08  select.bmp
      6780 Jul  9 2016 08:21  select.png
      4028 Jul  9 2016 08:21  slider_handle.png
      6343 Jul  9 2016 08:21  stop.png
      6605 Jul  9 2016 08:21  up.png
Total 19 files
# image NoImage.png
libpng warning: iCCP: known incorrect sRGB profile
# image ff.png
libpng warning: iCCP: known incorrect sRGB profile
# image PlayerICON.png
libpng warning: iCCP: known incorrect sRGB profile
#

実験は、RX65N Envision Kit で行った。

RXマイコンSDHIインターフェースその2(完了)

相変わらず、SDHCなどの高容量タイプで、ACMD41が失敗する問題に悩んで1週間くらい?

ロジックアナライザを繋いで制御ピンの状態を確認するとか、ありとあらゆる方策を試していたが・・・

全く成果無し状態でいた。

電源の状態が悪いのかとかも確認したが、電源のリップルはそれ程多くは無く、許容範囲だった。
RTK5 RX65N Envision Kit では、SD カード電源制御と、電源電圧の確認用に専用のICを使っているが、それは実装されていない為、とりあえず、P チャネルの MOSFET を取り付けて、電源制御を加えてみたりもしたが、全く効果は無い。
※秋月電子で入手出来る「DMG3415U」を使った。

LA2016 の SDIO 解析画面

LA2016 には、色々な解析モードが用意されており、それを使う事で、CMDピンで、ホストとスレーブ間でやりとりするデータ列を具体的に確認する事が出来る。
凄く便利で、素晴らしい機能だーー
※今まで、こんなに便利な機能なのに、あまり積極的に使っていなかった、他にも色々と解析が出来るので、これからは重宝すると思う。

これで、確認した限りでは、問題無さそうで、2GのSDカードと8GのSDカードの違いは無さそうだった。
※ただ、SDHCカードでは、BUSYのまま・・・

SD カード関係の正規資料なども、色々読んで、何か間違いが無いかを確認していた。

そんな時、アルテラ社のFPGA向けライブラリでSDIOの説明を見つけ、ACMD41関係の部分を読んでいたら、
> SD_SEND_OP_COND(ACMD41)コマンドを送信します。
> ビット [23:0] = サポートされている電圧範囲

ん?

サポートされている電圧範囲?

現状では、0x000000 を送っている・・・

SPI だと、0x000000 を送っていて、SDHCカードを使えている。

それで、ルネサスの r_sdhi ソースを確認してみると、2.7V から 3.6V の場合、0xFF8000 を設定する事が判った・・・

で、修正してみると、今度は成功する・・・
今までの苦労は何だったのか・・・

まぁ、良くある話ではあるのだが、思い込みで、正規の資料を読んでも、重要な事をスルーしてしまう・・・

まぁ動いたから「ヨシ」とする・・

SDモードでの初期化の手順をまとめると・・・

・SDモードによる初期化手順
(1)CMD0、0x00000000
※複数打った方が良いかもしれない(SDカードは応答を返さない)
(2)CMD8、0x000001AA
※0x100 は電圧範囲(2.7V ~ 3.6V)
※0x0AA は、マッチパターン
(3)CMD8 のステータスで、0x1AA が返れば、SDV2 カード
それ以外の場合、エラー
※CMD8のレスポンスが無い場合、そのカードはCMD8をサポートしておらず、別の初期化シーケンスに切り替える。
これは多分、容量が少ない昔のカードの場合など(自分のドライバーでは、現状、サポートしていない)
(4)ACMD41、0x40FF8000
レスポンスのB31が「1」になるまで投げ続ける。
※1回投げて、1ms 待つ、1000回繰り返しても「1」に成らなければエラーとする。
※レスポンスで、B30が「1」なら、そのカードは、ブロックアクセスを行う。
これは、32 ビットだと 0 ~ 4G までしかアクセス出来ないので、それに対応する方法、このビットが有効なら、read/write はブロックアクセスとなる。
(5)CMD2、0 で CID を取得
(6)CMD3、0 で RCA を取得(B31~B16)
(7)CMD7、RCA でカード選択
(8)CMD16,512 でセクターサイズ設定
(9)ACMD6、0x00000002 で、バス幅を4ビットにする。
※1ビットの場合、0x00000000
(10)SDHI のバス幅を切り替えて、クロック速度をブーストする。

まだ、エラー検査とかがズブズブで、割り込みやDMAに対応していないが、とりあえず、動くようになった・・・
速度はかなり高速で、以下のような感じ~
※GitHub のマスターにマージ済み

QIDIAN MLC 32GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  0 [ms]
Write: 440393 Bytes/Sec
Write: 430 KBytes/Sec
Close: 5 [ms]
# read test.bin
SD Read test...
Open:  0 [ms]
Read: 1048576 Bytes/Sec
Read: 1024 KBytes/Sec
Close: 0 [ms]

Lexar 633x 8GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  170 [ms]
Write: 215048 Bytes/Sec
Write: 210 KBytes/Sec
Close: 12 [ms]
# read test.bin
SD Read test...
Open:  2 [ms]
Read: 1302578 Bytes/Sec
Read: 1272 KBytes/Sec
Close: 0 [ms]

SanDisk Industrial 8GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  3 [ms]
Write: 338359 Bytes/Sec
Write: 330 KBytes/Sec
Close: 98 [ms]
# read test.bin
SD Read test...
Open:  1 [ms]
Read: 1747626 Bytes/Sec
Read: 1706 KBytes/Sec
Close: 0 [ms]

SanDisk Industrial 16GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  6 [ms]
Write: 397941 Bytes/Sec
Write: 388 KBytes/Sec
Close: 5 [ms]
# read test.bin
SD Read test...
Open:  2 [ms]
Read: 1227840 Bytes/Sec
Read: 1199 KBytes/Sec
Close: 0 [ms]

TOSHIBA 40MB/s Taiwan 32GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  1 [ms]
Write: 204920 Bytes/Sec
Write: 200 KBytes/Sec
Close: 46 [ms]
# read test.bin
SD Read test...
Open:  1 [ms]
Read: 1091130 Bytes/Sec
Read: 1065 KBytes/Sec
Close: 0 [ms]

SanDisk Industrial 16GB (SDHC) Class10 for Soft-SPI
# write test3.bin
Open:  0 [ms]
Write: 181634 Bytes/Sec
Write: 177 KBytes/Sec
Close: 17 [ms]
# read test3.bin
SD Read test...
Open:  2 [ms]
Read: 232758 Bytes/Sec
Read: 227 KBytes/Sec
Close: 0 [ms]

以下のようにして、SDHIインターフェースを使う場合とSPI(ソフトSPI)を使う場合を切り替えできる。

    // カード電源制御は使わない場合、「device::NULL_PORT」を指定する。
//  typedef device::NULL_PORT SDC_POWER;
    typedef device::PORT<device::PORT6, device::bitpos::B4> SDC_POWER;

#ifdef SDHI_IF
    // RX65N Envision Kit の SDHI ポートは、候補3になっている
    typedef fatfs::sdhi_io<device::SDHI, SDC_POWER, device::port_map::option::THIRD> SDHI;
    SDHI    sdh_;
#else
    // Soft SDC 用 SPI 定義(SPI)
    typedef device::PORT<device::PORT2, device::bitpos::B2> MISO;  // DAT0
    typedef device::PORT<device::PORT2, device::bitpos::B0> MOSI;  // CMD
    typedef device::PORT<device::PORT2, device::bitpos::B1> SPCK;  // CLK

    typedef device::spi_io2<MISO, MOSI, SPCK> SPI;  ///< Soft SPI 定義

    SPI     spi_;

    typedef device::PORT<device::PORT1, device::bitpos::B7> SDC_SELECT;  // DAT3 カード選択信号
    typedef device::PORT<device::PORT2, device::bitpos::B5> SDC_DETECT;  // CD   カード検出

    typedef fatfs::mmc_io<SPI, SDC_SELECT, SDC_POWER, SDC_DETECT> MMC;   // ハードウェアー定義

    MMC     sdh_(spi_, 35000000);
#endif

RXマイコンSDHIインターフェースその1

RX65N Envision Kit の、SD カードインターフェースは、SDHI インターフェースを想定した設計になっている。

しかし、RX マイコンの SDHI インターフェースでは、ハードウェアーマニュアルの情報だけでは、不明な事が多く、ソフトウェアを実装出来ない状態だった。
※SDHI のハードウェアー操作は、SD カードの制御シーケンスと密接に関連している為、これは仕方無いかもしれない・・
※何回かトライしたが初期化の段階で、思ったように動かないので、断念していた・・
※とりあえず、実績のある ChaN 氏のソフトウェアー SPI で動かしていた。

最近、ルネサスは、SD カードの操作が含まれるマネージャー関連(SD カードの初期化などが含まれる r_sdc_sdmem_rx)を公開するようになったので、具体的にどのように SDHI にアクセスするのか不明な部分が明らかになってきた。
※以前、RX64M、RX71M は、SDHI インターフェースがオプションとなっており、自分の持っているデバイスは、「SDHI なし」なので、試せないでいた・・

また、SD カードを SPI でアクセスする方法は、かなり情報があるのだが、4ビット(SD モード)でアクセスする方法は、情報が少なく、どのような初期化をするのか、イマイチ判らなかった・・・
最近ネットで、kingston SD カードの詳細な 解説を見つけ、この情報をたよりにする事で、SD モードでの推移方法がかなり詳しく判った。

それらの情報を元に、初期化プロセスを実装してみたが、正常に動作しない・・・
(1) 1GB、2GB の HC ではない SD カードだと、初期化に成功する事を発見したが、8GB、16GB、32GB(SDHC)のカードでは、初期化に失敗する。
※ACMD41コマンドで失敗しているが原因が判らない。
ACMD41 コマンドは、ステートに、BUSYがREADYに変わるまで呼び続ける仕様だが、SDHC カードの場合、いつまでたっても READY にならない・・・

とりあえず、手持ちの中で、動作する2枚のカードをテストした。
2GB のカードより、1GB のカードの方が性能が高い為、1GB のカードのみ評価した。
・1ビットバスと4ビットバスの速度比較
・クロック速度による違い

KINGMAX 1GB MicroSD CARD:
Clock: 15MHz
1 bit bus:
Open:  0 [ms]
Read: 825650 Bytes/Sec
Read: 806 KBytes/Sec
Close: 0 [ms]

4 bits bus:
Open:  0 [ms]
Read: 1233618 Bytes/Sec
Read: 1204 KBytes/Sec
Close: 0 [ms]

Clock: 30MHz:
Open:  0 [ms]
Read: 1347784 Bytes/Sec
Read: 1316 KBytes/Sec
Close: 0 [ms]

上記のように、大体1.5倍くらいの違いがある。
駆動クロックを倍にすると、10% 弱速くなるようだが、最終的に扱う場合には、ノイズ耐性、インピーダンスのマッチング(ダンピング抵抗、プルアップ、プルダウン抵抗)など色々考える事が多く、微妙だろうと思う。

流石、4ビットモードは、昔の 1GB の SD カードでも 1.3M バイト毎秒以上の速度が出るので、十分利便性が高い。(早急にSDHCカードが動かない原因を突き止めないと・・・)

最近の高速、高容量の SD カードは、高速動作時に、消費電力を下げる為、より低い電圧(1.8V など)で動作するような仕組みがあるようだ。

しかしながら、インターフェースの I/O 電圧が、低い電圧に対応していないとならない為、たとえ、電源電圧を制御する事が出来ても、対応出来ない。
RX マイコンの SDHI は、1.8V などの I/O 電圧に対応していないので、レベルシフターを間に入れるなどの対応をしないと、電圧を下げて使う事が出来ない。

又、バスのサンプリングポイントを調整するコマンドもあるようだ。

今回はここまで、SDHC における、ACMD41 が失敗する原因を色々探って、色々な実験をしたが、成果は無かった・・・
ハードウェアーで足りない部分があるのかとも思ったが、それも違うようだ・・・
ルネサスのソースコードも読んで、同じようなシーケンスを組んでいる筈だが、動かない・・・

ChaN さんの SPI 仕様では、ACMD41 は正常終了して、SDHC は動くのだが、それと何が違うのか、判らないでいる・・・

R8C で AD9851を試してみる

以前に、周波数シンセサイザ、AD9833 を試していたが、より高い周波数に対応した、AD9851も試してみた。
※最近RXマイコンばかりで久しぶりにR8Cを触った、このような実験には、小回りが利いて便利だ。

値段はかなり高く、モジュールで3500円程だった。

買ってから気がついたが、このICはサイン波のみで、三角波はサポートしていない。
※矩形波はコンパレーターがあるので作れるだろうか・・

ただ、内部は最大180MHzで駆動できる為、出力できる周波数を高く設定でき、周波数ステップも細かく設定可能。
※AD9850は最大125MHz
※AD9833は最大25MHz
※AD9851では、電源電圧により、最大動作周波数が異なる

モジュールでは、出力にLCRを使ったローパスフィルタが組んであるのだが、出力する周波数によって振幅が小さくなるので、結構扱いが面倒だ・・
※10MHzだと減衰がかなり大きい。
この手のICを実用的に使うとなると、一番ネックになるのが、出力の扱いだと思う。
中心をGNDにして、+-で振幅させたいとか、出力振幅やオフセットを設定したいとかするには、外部に何らかの回路を付けたいが、マイコンで制御できるようにするには、意外と単純では無い。

いつものようにテンプレートライブラリとしたが、周波数の計算で、倍精度の浮動小数点を使っている。
本来整数計算だけで出来ると思うが、参考にしたライブラリの手法をそのまま流用した、時間がある時にでも考えてみたい。

ICの制御は基本4本の制御線が必要で、外部基準発信器をどのようにするかを設定出来るようにしてある。

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
/*!
    @brief  AD985X テンプレートクラス
    @param[in]  D7      ポート・クラス
    @param[in]  W_CLK   ポート・クラス
    @param[in]  FQ_UD   ポート・クラス(FQ_UpdDate)
    @param[in]  RESET   ポート・クラス
    @param[in]  BASEC   ベースクロック(AD9850:125, AD9851:180)
*/    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
template <class D7, class W_CLK, class FQ_UD, class RESET, uint32_t BASEC>
class AD985X {

...
public:
    //-----------------------------------------------------------------//
    /*!
        @brief  レジスターを設定
        @param[in]  w0      W0 レジスター値
        @param[in]  freq    周波数
     */
    //-----------------------------------------------------------------//
    void set_reg(uint8_t w0, float freq)


};

サンプルでは、外部OSCが30MHzで、内部の6倍PLLを有効にする。

    // P1_0(20):
    typedef device::PORT<device::PORT1, device::bitpos::B0> D7;
    // P1_1(19):
    typedef device::PORT<device::PORT1, device::bitpos::B1> W_CLK;
    // P1_2(18):
    typedef device::PORT<device::PORT1, device::bitpos::B2> FQ_UP;
    // P1_3(17):
    typedef device::PORT<device::PORT1, device::bitpos::B3> RESET;

    // 180MHz
    typedef chip::AD985X<D7, W_CLK, FQ_UP, RESET, 180> AD9851;
    AD9851  ad9851_;



    {  // AD9851 開始
        ad9851_.start();
        ad9851_.reset();
    }




    char tmp[32];
    command_.get_word(1, sizeof(tmp), tmp);
    float a = 0.0f;
    if((utils::input("%f", tmp) % a).status()) {
        ad9851_.set_reg(0b00001001, a);  // Phase: 1, PLL 6x
    } else {
        error = true;
    }

市販の周波数ジェネレーターはそれなりに高いので、安価な実験用発信器が欲しかったのだが、実用的な物にするにはそれなりの工夫が必要で、それなりに考える必要がある。
AD9851は内部180MHz動作なのだが、三角波も出せないので、AD9833の方が良いのかもしれない・・・

AD985X.hpp
github AD9851_sample

RX65N Envision Kit ファミコンエミュレーター再び

RX65N Envision Kit で実現する、ファミコンエミュレーターだけど、内臓メモリの空きエリアなどの問題で、動作させる事が出来るカートリッジファイルに大きな制限があった。

それもあって、実用性が乏しいので、機能を追加する事に消極的だった。
なので、本来持っている機能(ステートのセーブ、ロードなど)実装していなかった。

以前のバージョンでは、最大でも1MビットROM1個分(128Kバイト)までしか動作出来なかった。
※1Mビット1個でもメモリ不足になるカートリッジファイルもあった・・
最近、nes ファイルのロードと、メモリアロケーション関係を整理(nes_rom.c)、修正したら、実は2Mビット(256K)まで動作可能な事が判った。
※何で、こんな「無駄」な事をしていたのか理解に苦しむが、元のソースコードは、ESP32用だったので、ESP32 用になっていた物を Windows で動かす実験をした際に、適当な実装になっていたのがそのまま残っていた・・・

2Mビットまでとなると、過去に自分がプログラムを担当した「暴れん坊天狗」が動く!(RX65NでNESEMUを走らせるゴールのようなもの)
※かれこれ30年前のファミコン向けゲーム(NES版は、「Zombie Nation」)
※1Mビット(PRG)+1Mビット(CHR)、MMC3バンク切り替えという仕様
※生産数が少ない為、今では貴重なカートリッジで、中古価格は意外と高い、確か、まだ実家に未使用品が1個あったハズだが、捨てられているかもしれない・・
※国内版と海外版でタイトルが異なるが、本来、海外版向けとして開発していたが、国内で売る場合に、京都のN社の「倫理規定」が通らず、社長の一存で、国内向けにタイトルを変更したものだった。
今でも覚えているが、社長が、新聞の番組欄で「暴れん坊将軍」を見て、それと、その当時N社が販売していた「花札の天狗」をかけて出来たタイトルで、自機のキャラクターも、落ち武者の顔から天狗になった・・・
まぁ、B級とか、糞ゲーとか揶揄されるが、結構真面目に丁寧に設計され作っている。
感覚と理論的なバックボーン、バランスで出来ている。
※サウンドドライバーや、スコアのオーサリングツールも自分で実装していて、ドット絵ツール以外は全て一人でコーディングした。
このゲームは、音楽も高く評価されている。
源平のN氏が最後に作曲をしたファミコンの作品だと思う。
※楽曲は、N氏とO氏の共同作業だった。
※ドラムやスネアなどで使っている、デルタモジュレータのビットストリームは、当時交流があったU氏が、FMタウンズでサンプリングして作成したデータが元になっていて、音楽や企画を担当したO氏が、それのスタートアドレスを微妙にずらしてバリエーションを作り色々工夫して使っている。
「NOAのテスターにNESでは最高の音楽」と言ってもらった。
※国内版(海外版は修正されている)には、バグがあり、割り込み内で、プログラムバンクを切り替えていて、元に戻し忘れているので、微妙な確率で、暴走して、奇妙な動作をする事がある。
このバグは処理が重い状態じゃないと発生しないので、デバッグでは見つける事が出来なかった・・・
驚く事に、ネットで流通している nes ファイルの中には、このバグにパッチを当てて修正しているものもある。
※エミュレーターでは未定義動作で停止してしまうのだろう~

RX65N のパフォーマンスは素晴らしい、ファミコンのハードウェアを完全にエミュレーションできる。
音も完全に近い状態で再生される。
そして、ステートのセーブとロード機能も実装しておいたので、バッテリーバックアップ機能が無いカートリッジでも、途中の状態をまるまるセーブして保存出来る。
※ファミコンの電源を切らない状態の再現

カートリッジファイルは拡張子が「nes」になっており、PC などのエミュレーターなどで一般的な形式を使っている。
※このファイル形式は、カートリッジのハードウェアー設定なども含まれていて、自動で、キャラジェネのH、Vリンク、マッパーのエミュレーションを切り替える。

ESP32 版と大きく異なるのは、2Mビットまでだが、カートリッジファイルを選んでエミュレーションする事が出来る(この違いは大きい)点
オーディオの再生品質がほぼ完全な事。
※ESP32 では、nes ファイルを ROM データとして、プログラムと同梱しなければならず、又、オーディオの品質もかなり低いと思われる。
エミュレータの品質が高いのは、nesemu コードが優れており、ルネサス RX65N マイコンの高機能によるところが大きいものとなっている。

RX65N Envision Kit の改造方法は、以下のリンクを参照して頂きたい。
RTK5_NESEMU for GitHub

改造は、比較的ハードルが低く、プログラムをコンパイルする環境も、 gcc で、ソースコードを取得して、手順を進めるだけなので意外と簡単だと思う。
※ルネサス純正コンパイラでは、試していないが、コンパイルが出来ないかもしれない。
※RX65N にプログラムを書き込む場合、ルネサス社のツール(Renesas Flash Programmer)を利用する必要があるが、無料版をダウンロードして使う事が出来る。

ゲームの操作は、タッチパネルでは操作が難しいので、外部にファミコンと同等なゲームパッドを接続する必要がある。
※ファミコンパッドには8ビットのシフトレジスタ(CMOS 4021B)が載っており、シリアルクロック、ロード/シフト、データの3本で情報を取得する。

RTK5RX65N Start for NES Emulator
Start GLCDC
# help
    dir [xxx]       list current directory
    pwd             current directory path
    cd [xxx]        change current directory
    nes filename
    pause
    reset
    save [slot-no]
    load [slot-no]
    info
    call-151
# nes GALAXIAN.NES
ROM header dirty, possible problem
ROM loaded: GALAXIAN.NES [0] 32k/8k Hcreated memory mapper: None
setting up mapper 0
reset memory mapper
# call-151
$fff8.ffff
FFF8- FF FF 0C E2 20 E0 20 E0
$e020l
E020- 78       SEI
E021- D8       CLD
E022- A2 4D    LDX  #$4D
E024- 9A       TXS
E025- A9 10    LDA  #$10
E027- 8D 00 20 STA  $2000
E02A- AD 02 20 LDA  $2002
E02D- 10 FB    BPL  $E02A
E02F- A2 00    LDX  #$00
E031- 8A       TXA
E032- 95 00    STA  $00,X
E034- 9D 00 02 STA  $0200,X
E037- 9D 00 06 STA  $0600,X
E03A- 9D 00 07 STA  $0700,X
E03D- E8       INX
E03E- D0 F2    BNE  $E032
E040- A2 00    LDX  #$00
E042- BD 05 01 LDA  $0105,X
E045- DD 10 E0 CMP  $E010,X
E048- D0 0B    BNE  $E055
$0.ff
0000- 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
0010- 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
0020- 00 00 00 40 00 00 00 24  00 00 01 00 00 14 01 00
0030- 00 00 00 00 00 00 03 20  F2 E1 F3 E9 00 01 01 00
0040- 00 00 00 01 02 00 00 00  00 00 00 00 04 00 00 00
0050- 00 00 00 00 00 00 00 00  00 00 00 21 2B 41 4A 50
0060- 59 5C 07 0F 10 00 0C 00  32 00 00 00 00 00 00 0B
0070- 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
0080- 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
0090- 00 00 00 00 00 00 00 00  00 00 01 00 00 F0 FF 00
00A0- 00 01 00 09 08 07 06 05  04 03 02 01 00 09 08 07
00B0- 06 05 04 03 02 01 00 09  08 07 06 05 04 03 02 01
00C0- 00 00 FB 07 0F 1F 3F 1F  18 3E 1C 07 00 07 0F 1F
00D0- 3F 1F 1F 3F 1F 0F 07 00  2F 00 86 20 33 00 3D 09
00E0- 23 00 77 06 F8 F9 00 00  CF E9 B0 E9 0B 0B 00 00
00F0- 00 00 0B 00 00 00 00 FF  00 00 06 90 00 00 04 02
$0.
0000- 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
$0:1 2 3 4
$0.
0000- 01 02 03 04 00 00 00 00  00 00 00 00 00 00 00 00
$400
0400- FD
$

上記のように、シリアル接続により、モニターぽぃ機能が使える。
※SCI9、8ビット、1ストップビット、115200 BPS

・「call-151」でモニターが起動(「exit」で戻る)
・6502逆アセンブラが使える。
・メモリダンプや、メモリの書き換え等が出来る。
※「call-151」の意味が判る人なら、使い方は判ると思うが、上記機能くらいしか実装していない。

LAN8720A モジュールの試用

FreeRTOS でネットワーク関係を実験したくて、中華製のLAN8720 モジュールを試してみた。

モジュールは、アマゾンで購入した。

本当は、RX65N Envition kit で未実装のPHYチップやトランスなどを実装して、実験するつもりで部品を買っていたが、QFNパッケージのハンダ付けが難しく(1個失敗した)、また、本体を壊してしまうのではと思い、工具も無いので、ストールしていた。

LAN8720A はマイクロチップの 10/100 イーサネット PHY で、安価で入手しやすく、比較的良く使われているデバイスだ。
※GR-KAEDE にも使われている。

QFNパッケージで、裏が全面 GND、DIY ではユニバーサル基板で製作しにくい。
※QFN のユニバーサル基板が割高で入手しにくいのも要因

モジュールは安く送料も無料だが、船便なので、注文してから10日程かかる、基板が届いて早速開封、ネットで回路などを探す。
「LAN8720 ETH Board」

このモジュールは、50MHz の OSC が乗っていて、一般的な25MHz クリスタルとは異なっている。

LAN8720Aは、リセット時のピン状態を読み込んで、基本的な設定を自動で行う「Configuration Straps」と呼ばれる機能がある。

50MHz 外部クロックを使う場合、「LED2/nINTSEL(2)」をオープンかプルアップしておく必要がある。
※ボードはLEDが接続されており「オープン状態なので」50MHz外部クロックモードになっていると思われる。
同時に LED のドライブはアクティブ LOW となる。(吸い込み)

最初に試すソフトは、以前に実験した、ルネサスの T4 ライブラリなので、GR-KAEDE などと同等にしておく必要がある。

RX マイコンの仕様なのかもしれないが、PHY デバイスとの通信で使う「MDC、MDIO」は参考回路ではプルアップしてあるので、同じようにプルアップしておく。
※以前に、プルアップが無い場合にPHY通信が失敗した事があった。
※回路図を見ると、MDIOはプルアップしてあるので、MDCのみ適当な抵抗(3.9K)でプルアップしておいた。

このボードで、問題なのは、RX_ER 端子がプルアップされて、外部コネクタに出ていない。
また、この端子は、「 Configuration Straps 」における、PHYアドレスを設定するピンでもある、チップ抵抗を外して、直接ラインを接続した。
※ボードは、写真のように、ピンヘッダーを外して、直接ボードに取りつけてある。
※このような組み方を良くする、やってみると簡単で確実。

RX_ER 端子を直接接続

今回実験に使ったRXマイコンは、RX71Mで、169ピンタイプ。

イーサーネットは、チャネル0を使った。
各ピンの接続は以下のようになっている。
RX71M: P83/RMMI0_CRS_DV(74) —> CRS_DV(7)
RX71M: P82/RMMI0_TXD1(79) —> TXD1(14)
RX71M: P81/RMMI0_TXD0(80) —> TXD0(11)
RX71M: P80/RMMI0_TXD_EN(81) —> TXD_EN(12)
RX71M: P77/RMMI0_RX_ER(84) —> LAN8720 (10) 直接続
RX71M: P76/REF50CK0(85) —> RX_CLK(8)
RX71M: P75/RMMI0_RXD0(87) —> RXD0(10)
RX71M: P71/RMMI0_RXD1(88) —> RXD1(9)
RX71M: P72/ET0_MDC(101) —> MDC(5)
RX71M: P71/ET0_MDIO(102) —> MDIO(6)
RX71M: Vcc(3.3V) —> VCC(1, 2)
RX71M: Vss(GND) —> GND(3, 4)

接続の様子:

Start RX71M http sample
Link no proccess (0)
Link no proccess (1)
Link no proccess (2)
Link no proccess (3)
Link no proccess (4)
Get DHCP: 192.168.0.4

RXマイコン、FreeRTOS、FatFs でオーディオ再生

前回、マルチスレッドとは言え、シンプルな物で、動作検証を行った。

そこで、今回はもう少し複雑となる、MP3、WAV、のコーデックを動かして、実用的な実験を行った。

詳細は「RXマイコン、FreeRTOS、FatFs、で MP3、WAV の再生」に投稿した。

プログラムは、
・自作 RX64M
・GR-KAEDE
・RX65N Envition kit
などで行った。

FreeRTOS は使える~

元は、シングルタスク用に作ったもので、それを別タスクで動かし、コーデックのデコードをやっている。

タスク間は、ファイル名の受け渡しを行っている。

音楽再生中に、SDカードのディレクトリーを取るなど、平行動作させても、音楽の再生は途切れずに鳴り続ける。

FreeRTOS で FatFs を使う

FatFs 0.13c には、スレッドセーフで動かす為の機能が用意されている。

そこで、FreeRTOS で異なるタスクから、ファイル操作を行う実験を行い、その設定などをまとめ Qiita に投稿した。

RXマイコンを使って、FatFs を FreeRTOS で運用する

GR-KAEDE(RX64M)、自作のRX64Mボード、RX65N Envition Kit などで動作を確認した。
※RX66T、RX71M でも動作するだろうが、SDカードのインターフェースを付けていないので確認できない・・

RX24Tではメモリが少なく、動作を確認出来なかった・・

RX24Tは、RAMが16Kしか無いので、タスク別にスタックを確保する必要があるので、どうしても無理があるのかもしれない。
多分、32Kあれば、動くと思える。

FreeRTOS で FatFs を使う場合、現在のバージョンでは、多少、FatFs のソースコードを修正する必要がある。

FatFs をバージョンアップ

FreeRTOS を本格的に運用する目処がたったので、まず、FatFs を最新版にした。

以前は、「ff12b」を使っていた。

今回「ff13c」に移行した。

意外と大きく変更になっている。

・ファイル名やパスが整理された。
・ヘッダー定義名やマクロ名などが、吟味され、より良くなった。
※マクロ名など、他のシステムと「当たらない」ように修正されたようだ。
・ファイルパスの文字コードがより洗練されて扱いやすくなった。
※ファイルのパスコードで、以前は、CP932 か、UTF-16 しか選べなかったが、UTF-8 も使えるようになった。
・排他制御用をやりやすいように変更があったようだ。
※lock、unlock などの関数コールが追加され、FreeRTOSと親和性が高い。
・一部、API が廃止になり、新しい API になった。
※日本だけなら、コードページ932だけで良いが、世界中で使っているので、その辺りを柔軟に改良したようだ。

などなど、細かく色々修正されている。

えるむ/ChaN さんのこのプロジェクトは世界中の人が使っている。
本当に素晴らしく、高機能なもので、今でも、少しづつ改良されているのには驚くばかりで、本当に頭が下がる。

FreeRTOS のような RTOS では、複数のタスクから、ファイル操作が出来ないとならないので、ドライバーの出来は、性能に直接影響するので、現在のソフト転送は改良する必要性がある。

ただ、難しい部分でもあり、性能を上げるのは簡単ではなさそうだ・・・

—–

とりあえず、github の FatFs を使っているアプリを全て修正し、master ブランチにマージしてある。

FreeRTOS、Rxv2 と、他デバイス対応

現在自分が扱う RX マイコンはどれも、RXv2 コアなので、GCC/RX600v2 のコードを使いたい。
しかしながら、gcc-6.4.0 は「RXv2」に対応していない。

rx-elf-as は、RXv2 に対応している。

% rx-elf-as -v --help
GNU assembler version 2.28 (rx-elf) using BFD version (GNU Binutils) 2.28
Usage: ./rx-elf-as [option...] [asmfile...]
Options:

.....
.....
.....

  --mcpu=<rx100|rx200|rx600|rx610|rxv2>
  --mno-allow-string-insns
Report bugs to <http://www.sourceware.org/bugzilla/>

そこで、RXv2 依存のアセンブリコードを使った関数を、アセンブラソースに分離して、対応する事にした。

多少の問題としては、「FreeRTOSConfig.h」の設定を使っている部分で(割り込みの優先順位)なのだが、まぁこれはあまり変更する事が無いと思うので、とりあえず、直接値を代入しておいた。

これで、リンクして、無事実行ファイルが出来、動作を確認したのだけど、そーいえば、コンパイラからアセンブラにオプションを渡せないのかな?

調べたら、あったー・・・

-Wa,option
option をアセンブラに対するオプションとして渡します。

なんだー、これだー、とゆー事で、Makefile を少し修正して、ソースコードはそのままで、「RXv2」に対応する事が出来たー
非常にスマートに対応出来た。

下記のようにコンパイラオプションを追加する事で、内部動作は、コンパイル後にアセンブラを起動する場合に、以下のオプションが追加される。

-Wa,-mcpu=rxv2

続いて、他のCPUについても、ICU 関係のクラスに「SWINT」関係を追加して、Makefile を作成して、実行ファイルを各マイコンに書き込んで試してみた。
とりあえず、問題なく動作するようだ。

これで、

RX24T
RX64M
RX71M
RX65N
RX66T

に対応する事が出来た、次は、よく使うドライバークラスをマルチタスク対応にして、ネットスタックの実験に進みたい。

ソースコードは、github の master ブランチにマージ済みとなっている。